.. mygym documentation master file, created by sphinx-quickstart on Fri Nov 13 15:32:27 2020. You can adapt this file completely to your liking, but it should at least contain the root `toctree` directive. Welcome to myGym's documentation! ================================= We introduce myGym, a toolkit suitable for fast prototyping of neural networks in the area of robotic manipulation and navigation. Our toolbox is fully modular, so you can train your network to control different robots in several envinronments defined parametrically. You can also create curicullum of tasks and test your network set of tasks with inreasing complexity. There is automatic evaluation and benchmark tool for your network. We pretrained the neural networks for visual recognition of all objects in the simulator. We constantly train networks to provide baselines for the tasks in the toolbox. The training is 50x faster with the visualization turned on than realtime simulations. .. note:: Mygym is now under construction Overview -------- +-----------------------------------+------------------------------------+ | Environment | Gym-v0 is suitable for | | | manipulation, navigation and | | | planning tasks | +===================================+====================================+ | Workspaces | Tabledesk, Collaborative table, | | | Maze, Vertical maze, Drawer, Darts,| | | Football, Fridge, Stairs, Baskets | +-----------------------------------+------------------------------------+ | Vision | Cartesians, RGB, Depth, Class, | | | Centroid, Bounding Box, Semantic | | | Mask, Latent vector | +-----------------------------------+------------------------------------+ | Robots | 7 robotic arms, 2 dualarms, | | | humanoid | +-----------------------------------+------------------------------------+ | Robot actions | Absolute, Relative, Joints | +-----------------------------------+------------------------------------+ | Objects | 54 objects in 5 categories | +-----------------------------------+------------------------------------+ | Tasks | Reach, Push, Pick, Place, | | | PicknPlace, Throw, Hit, Catch, | | | Navigate | +-----------------------------------+------------------------------------+ | Randomizers | Light, Texture, Size, Camera | | | position | +-----------------------------------+------------------------------------+ | Baselines | Tensorflow, Pytorch | +-----------------------------------+------------------------------------+ Modular Structure ----------------- We developed fully modular toolbox where user can easily combine the predefined elements into custom envinronment. There are specific modules for each component of the simulation. User can easily modify and add custom modules. .. figure:: ../../myGym/images/schemas/mygym_scheme.png :alt: myGymscheme .. toctree:: :maxdepth: 1 :caption: How to user_guide/installation user_guide/visualization user_guide/basic_training user_guide/tutorial_parametric user_guide/tutorial_config user_guide/train_camera user_guide/train_vae user_guide/parallel_training user_guide/tensorboard user_guide/test_model .. toctree:: :maxdepth: 1 :caption: How to - advanced user_guide/write_reward user_guide/create_workspace user_guide/create_network user_guide/dataset .. toctree:: :maxdepth: 1 :caption: Gym environments/workspace environments/mygym_objects environments/mygym_robots environments/gym_env .. toctree:: :maxdepth: 1 :caption: Baselines baselines/table .. toctree:: :maxdepth: 1 :caption: Important classes core_modules/base_env core_modules/robot core_modules/task core_modules/reward core_modules/vision other/camera other/env_object Citing myGym ------------ .. code-block:: bibtex @misc{myGym, author = {}, title = {myGym}, year = {2020}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {}, } Authors ------- Core team: `Michal Vavrecka `_, `Gabriela Sejnova `_, `Megi Mejdrechova `_, `Nikita Sokovnin `_ Contributors: Radoslav Skoviera, Peter Basar, Vojtech Pospisil, Jiri Kulisek, Anastasia Ostapenko, Sara Thu Nguyen Paper ----- `myGym: Modular Toolkit for Visuomotor Robotic Tasks `_ Indices and tables ================== * :ref:`genindex` * :ref:`modindex` * :ref:`search`